Maynooth University

Maynooth University ePrints and eTheses Archive

Maynooth University Library

Strongly real 2-blocks and the Frobenius-Schur indicator

Murray, John (2006) Strongly real 2-blocks and the Frobenius-Schur indicator. Osaka Journal of Mathematics, 43. pp. 201-213. ISSN 0030-6126

[img] Download (153kB)

Abstract

Let G be a nite group. In this paper we investigate the permutation module of G acting by conjugation on its involutions, over a eld of characteristic 2. This develops the main theme of [10] and [8]. In the former paper G. R. Robinson considered the projective components of this module. In the latter paper the author showed that each such component is irreducible and self-dual and belongs to a 2-blocks of defect zero. Here we investigate which 2-blocks have a composition factor in the involution module. There are two apparently di erent ways of characterising such blocks. One method is local and uses the defect classes of the block. This gives rise to the de nition of a strongly real 2-block. The other method is global and uses the Frobenius-Schur indicators of the irreducible characters in the block. Our main result is Theorem 2. The proof of this theorem requires Corollaries 4, 15, 18 and 20.

Item Type: Article
Keywords: Real 2-blocks; Frobenius-Schur indicator;
Subjects: Science & Engineering > Mathematics
Item ID: 2154
Depositing User: Dr. John Murray
Date Deposited: 07 Oct 2010 11:32
Journal or Publication Title: Osaka Journal of Mathematics
Publisher: Osaka University
Refereed: Yes
URI:

    Repository Staff Only(login required)

    View Item Item control page

    Document Downloads

    More statistics for this item...